

Experimental Analysis of Dependency Factors of

Software Product Reliability using SonarQube

Sanjay Joshi Persistent Systems Limited, India

Bharat Deshpande BITS Pilani, K K Birla Goa Campus, India

Sasikumar Punekkat Malardalen University, Sweden

Background

- Current Reliability Models are having limitation due to
 - Assumptions
 - Applicable for certain phases only
 - Not taking holistic view of environment for deriving reliability
- Objective
 - To identify most influential factors making impact on reliability
 - By performing experiments on different software products in diverse domains and developed using diverse technologies.
- These experiments were performed in a large software development organization in India, which has laboratory setup necessary for performing such experiments.

Background

- In this study, we hypothesize reliability to be a function of
 - Process Parameters (Schedule Variance, Effort Variance, Productivity)
 - Technology
 - Design parameters (Commercial Of The Shelf(COTS) complexity, Design Complexity)
 - Testing Parameters (Unit Test Defects, Integration Test Defects, System Test Defects, Defect Leakage and Post Delivery Defects)
 - Operational Parameters (Execution Time, Skill of Developer/Tester)

(These factors were identified as the most influential ones as perceived by stakeholders)

Research Context

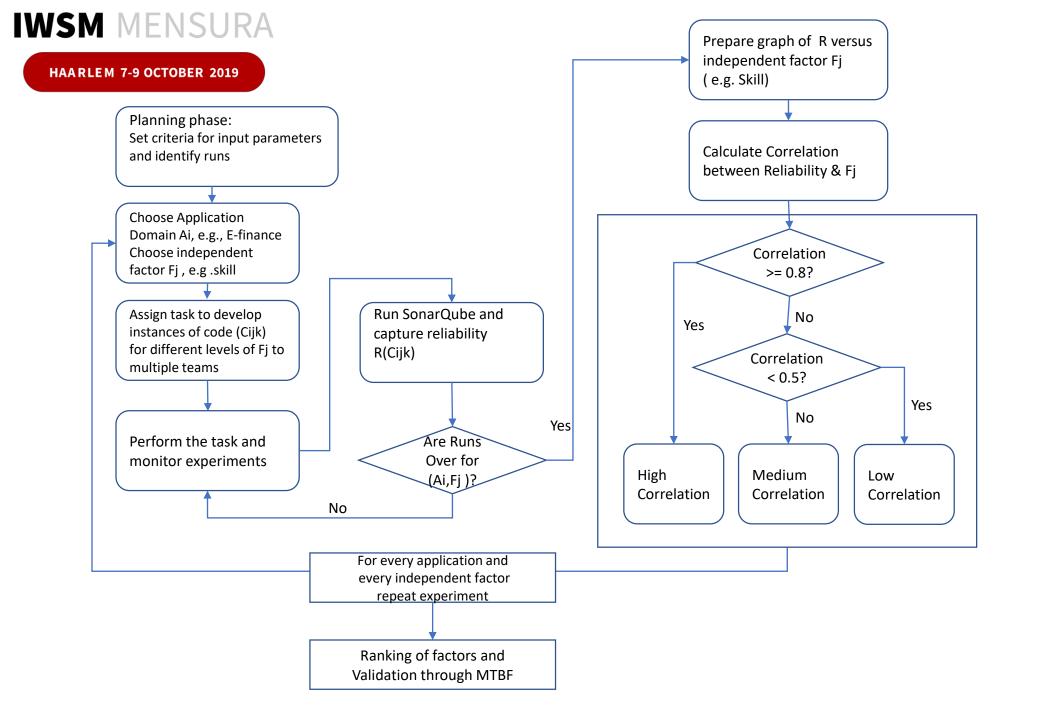
- Experiments involved studying impact of factors (identified during field survey) on reliability
- For each application performed minimum 30 combinations.
- For identifying most influential input factor contributing to reliability
- Capturing reliability for baseline purpose using "SonarQube"

Research Context

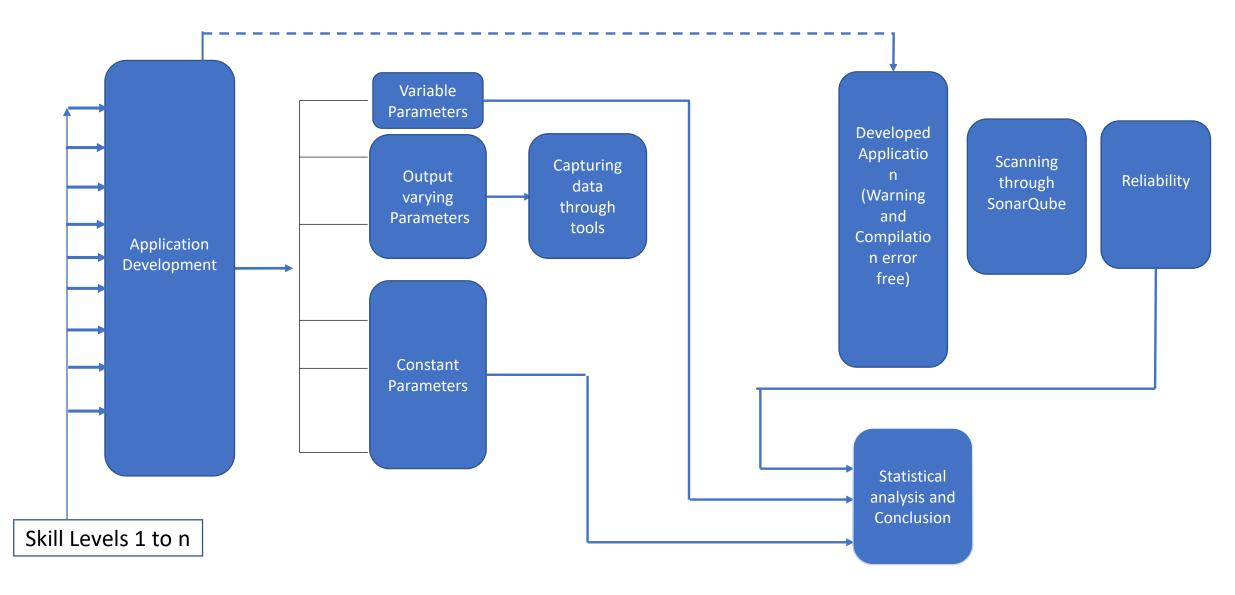
- Expected output : Hypothesis run on data obtained and confirm the result
- Independent parameters
 - Skill
 - Design Complexity
 - Technology
 - COTS Complexity
- Dependent parameters
 - UT Defects
 - IT Defects
 - ST Defects
 - Review Efficiency
 - Post Delivery Defects
 - Execution Time
 - Process Metrics
 - Schdule variance
 - Effort variance
 - Productivity
- Design Experiments on controlled environment
 - One parameters is variable and other are kept constant

Experimental Framework

- Application Selection Criteria for Experiments
 - Domain
 - Technology / Platform
 - Criticality
 - Design Complexity
 - Development Methodology
 - Size (KLOC or FP)
- Application Selected (Few examples)
 - Enterprise Risk Management Portal
 - ECG Monitoring System
 - Photoshop Application
 - e-Finance

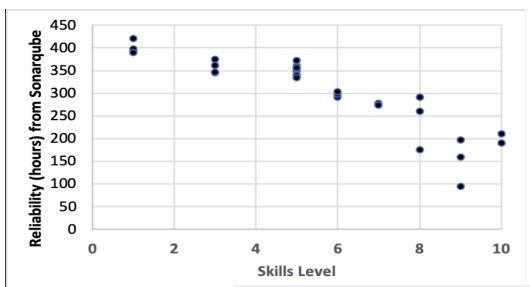

Methodology

- The main objective of performing experiments is to find cause and effect relationship=> Y= f(x1, x2, x3, x4.....xn)
- Experiments were conducted in a multinational software product organization having centers across the globe
- Series of experiments were conducted in controlled environment, where one parameter is considered as variable and other parameters are taken as constant



HAARLEM 7-9 OCTOBER 2019 Methodology

- Minimum of 10K lines of code was the criteria set for developing the application
- The design document was provided to all developers
- SonarQube was run on error free code to give the reliability factor for each skill level



Experimental Findings

Chi Square Test

> a <- table(data_skill3\$Skill.Level,data_skill3\$Reliability) > chisq.test(a)

Pearson's Chi-squared test

data: a

X-squared = 178.25, df = 147, p-value = 0.04044

Technology (major)	Chi2	Df	p value	Less than 0.05				
C#	393.75	336	0.0163	Yes				
Sharepoint	441.15	344	0000304	Yes				
ASP.NET	196	144	0.002588	Yes				
Java	226.65	180	0.0105	Yes				
	> a7 <- table(da > chisq.test(a7)	Chi Square Test > a7 <- table(data_skill7\$Skill.Level,data_skill7\$Reliability) > chisq.test(a7) Pearson's Chi-squared test						
	data: a7	data: a7						
Chi Square Test	X-squared = 157	X-squared = 157.89, df = 120, p-value = 0.01162						
	ll4\$Skill.Level,data_sk	ill4\$Reliability)						
chisq.test(a4)								
Pearson's Chi-squ	ared test							
ata: a4								

X-squared = 196, df = 144, p-value = 0.002588

Technology V/s Parameters	C#	Sharepoint	ASP.NET	Java	Inference	Average	Rank
Skill	0.890	0.9191	0.981	0.950	Strong	0.935025	2
UT defects	0.231	0.040	0.224	0.233	No	0.182	9
IT defects	0.295	0.230	0.262	0.260	No	0.26175	8
ST defects	0.6840	0.820	0.910	0.985	Good	0.84975	7
On time	0.040	0.201	0.040	0.105	No	0.0965	13
Load	0.833	0.789	0.980	0.820	Good	0.8555	6
Design Complexity	0.990	0.771	0.913	0.911	Good	0.89625	4
COTS	0.846	0.843	0.921	0.900	Good	0.8775	5
Review Efficiency	0.997	0.910	0.870	0.960	Strong	0.93425	3
Post Delivery Defects	0.936	0.990	0.960	0.966	Strong	0.963	1
SV	0.170	0.170	0.010	0.215	No	0.14125	11
EV	0.190	0.230	0.065	0.224	No	0.17745	10
Productivity	Productivity	0.160	0.190	0.051	No	0.124275	12

Sample Data – Skill (EXCEL FILE)

MWSM_Data

Conclusion

One of the noteworthy findings from these experiments are factors contributes significantly towards software product reliability

- Post-Delivery Defects,
- Skill
- Review Efficiency

With the help of this exercise, we could also eliminate some parameters such as

- Process metrics (Schedule Variance, Effort Variance and Productivity)
- Unit Test Defects, Integration Test Defect, System Test Defects

These experiments also indicate that following input parameters could make significant impact

- Load Condition
- Design Complexity
- COTS

Acknowledgement

- We would like to thank Dr. Yogesh Badhe, data scientists from Persistent Systems Ltd. for his valuable support in data analysis
- Also, we would like to thank Dr. Ramprasad Joshi, Birla Institute of Technology & Science, Pilani, Goa Campus for his valuable inputs for documentation while performing experiments
- Punnekkat acknowledges support from FiC (SSF) Project

Thank You